TF-IDF与余弦相似性的应用(三):自动摘要

机器学习 1047 Views

作者:阮一峰

博客链接:http://www.ruanyifeng.com/blog/2013/03/tf-idf.html

有时候,很简单的数学方法,就可以完成很复杂的任务。这个系列的前两部分就是很好的例子。仅仅依靠统计词频,就能找出关键词和相似文章。虽然它们算不上效果最好的方法,但肯定是最简便易行的方法。

今天,依然继续这个主题。讨论如何通过词频,对文章进行自动摘要(Automatic summarization)。

如果能从3000字的文章,提炼出150字的摘要,就可以为读者节省大量阅读时间。由人完成的摘要叫”人工摘要”,由机器完成的就叫”自动摘要”。许多网站都需要它,比如论文网站、新闻网站、搜索引擎等等。2007年,美国学者的论文《A Survey on Automatic Text Summarization》(Dipanjan Das,  Andre F.T. Martins, 2007)总结了目前的自动摘要算法。其中,很重要的一种就是词频统计

这种方法最早出自1958年的IBM公司科学家H.P. Luhn的论文《The Automatic Creation of Literature Abstracts》。

Luhn博士认为,文章的信息都包含在句子中,有些句子包含的信息多,有些句子包含的信息少。”自动摘要”就是要找出那些包含信息最多的句子。

句子的信息量用”关键词“来衡量。如果包含的关键词越多,就说明这个句子越重要。Luhn提出用”“(cluster)表示关键词的聚集。所谓”簇”就是包含多个关键词的句子片段。

上图就是Luhn原始论文的插图,被框起来的部分就是一个”簇”。只要关键词之间的距离小于”门槛值”,它们就被认为处于同一个簇之中。Luhn建议的门槛值是4或5。也就是说,如果两个关键词之间有5个以上的其他词,就可以把这两个关键词分在两个簇。

下一步,对于每个簇,都计算它的重要性分值

以前图为例,其中的簇一共有7个词,其中4个是关键词。因此,它的重要性分值等于 ( 4 x 4 ) / 7  = 2.3。

然后,找出包含分值最高的簇的句子(比如5句),把它们合在一起,就构成了这篇文章的自动摘要。具体实现可以参见《Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites》(O’Reilly, 2011)一书的第8章,python代码见github。

Luhn的这种算法后来被简化,不再区分”簇”,只考虑句子包含的关键词。下面就是一个例子(采用伪码表示),只考虑关键词首先出现的句子。

Summarizer(originalText, maxSummarySize):           // 计算原始文本的词频,生成一个数组,比如[(10,'the'), (3,'language'), (8,'code')...]     wordFrequences = getWordCounts(originalText)           // 过滤掉停用词,数组变成[(3, 'language'), (8, 'code')...]     contentWordFrequences = filtStopWords(wordFrequences)           // 按照词频进行排序,数组变成['code', 'language'...]     contentWordsSortbyFreq=sortByFreqThenDropFreq(contentWordFrequences)           // 将文章分成句子     sentences = getSentences(originalText)           // 选择关键词首先出现的句子     setSummarySentences = {}     for each word in contentWordsSortbyFreq:         firstMatchingSentence = search(sentences, word)         setSummarySentences.add(firstMatchingSentence)                   if setSummarySentences.size() = maxSummarySize:                          break     // 将选中的句子按照出现顺序,组成摘要     summary = ""     for each sentence in sentences:                   if sentence in setSummarySentences:            summary = summary + " " + sentence          return summary

类似的算法已经被写成了工具,比如基于Java的Classifier4J库的SimpleSummariser模块、基于C语言的OTS库、以及基于classifier4J的C#实现和python实现。

附:github链接 

https://github.com/ptwobrussell/Mining-the-Social-

Web/blob/master/python_code/blogs_and_nlp__summarize.py


推荐阅读

基础 | TreeLSTM Sentiment Classification

基础 | 详解依存树的来龙去脉及用法

基础 | 基于注意力机制的seq2seq网络

原创 | Simple Recurrent Unit For Sentence Classification

原创 | Highway Networks For Sentence Classification

欢迎关注交流

如未说明则本站原创,转载请注明出处:NULL » TF-IDF与余弦相似性的应用(三):自动摘要